

21 Avril 2010

Multi-modalities and Non-invasive Imaging In Tissue Engineering : From Microscopy to Macroscopy

PTIBC-IBISA

Dominique Dumas S. Hupont, JF. Stoltz, P. Gillet Université Henri Poincaré Nancy I UMR 7561 CNRS - Directeur : Jacques Magdalou FR3209 CNRS . Directeur : Patrick Netter

GDR2588CNRS (L. Héliot)/RTfmf (D.Dumas) ITMO BCBD - A. Le Bivic ITMO TS - J. Grassi

3D Imaging : Medical Tissue Engineering (stem cells)

Endothelial Cells Blood vessel

Occlusion Atherosclerosis

Hyalin chondrocytes Cartilage matrix

Degenerative disease Osteoarthritis

Future.

Thick and opaque specimens

Ligament fibroblasts

LCA Rupture

Core Facility Service

1998 : 3D deconvolution imaging

2002 : CLSM Confocal Laser Scanning Microscopy

2003 : TPE Multiphoton Microscopy (FLIM)

2006 : FCS

2007 : SHG Microscopy

2009 : MP-SHG Macroscopy (prototype)

2010: Phase Imaging

Industrial Partnership

R&D Collagen imaging Phase imaging

3D network : collagen functional

Cartilage Composition

	Туре	Polymerized form	Representation
Fibrils	I	fibrils	Bone, skin, tendon, ligament, cornea, internal organs, fibrous cartilage
	п	fibrils	cartilage (elastic and hyaline)
	III	fibrils	hypoderm, vessel, hair
	V	fibrils (with type I)	see type I
	XI	fibrils (with type II)	see type II
Associated with fibrils	IX	Lateral connection with type II fibrils	cartilage
	XII	Lateral connection with type II fibrils	Some other tissues
Network	IV	network	Basal lamina
	VII	Anchoring fibrils in basal membranes	epidermis

Organization of collagen fibrils into fibers and bundles

Evaluation of Functional network Mechanical properties

Interaction light / Matter : IR light for Tissue Imaging

<u>Tissue imaging :</u> -Cartilage -Tumors -Arteries -Tendon...

Thick and opaque specimens

Advantages of multiphoton (IR) excitation

- Less absorption by biological specimens
 - → Deeper penetration (than UV-Visible)
- Less photodamage
 - \rightarrow confinement of excitation to the focal plane

Principle of multiphoton excitation

- Spatio-temporal confinement of photons
- Conditions obtained with short impulsions at high frequency

Über Etementarakte mit swei Quantensprüngen Von Maria EGpport-Mayer (Götinger Dusertatio) (Mit 5 Figura) Einistran Dar ernte Teil dissor Arbeit beschäftigt sich mit dem Zusannienwirken zweich Lichtquanten in einem Elereontarakt

TPE (Two Photon Excitation)

S0

Non linear Absorption Emission in visible

IR pulsed laser : modalities imaging techniques 0 SHG **Spectral** SHG e Femtosecond Ti:Sa Oscillator Mira F-900 Laser Scanning Microscope Galvano metric mirrors FLIM Module SPC730 Time Correlated Single **Multiphoton Excitation** Photon Counting

MP imaging applied to tissue : fluorescent probe

Graft Cardiomyocyte

Rat articular cartilage Chondrocyte (nucleus in blue) Depth : 219 µm

Femoral artery + film PAH- Rhodamine

Apoptosis (live/dead)

Chondrocyte in aliginate bead Depth : 1600 µm

SHG : Second Harmonic Generation

SHG collagen : high non linear susceptibility

- Main tissular component giving rise to SHG : Collagen
- Importance of orientation and arrangement of molecules
- Quadratic dependence on number of molecules
- > Quasi instantaneous Generation (fs) \rightarrow Coherent Signal
- \succ No exogenous dye \rightarrow Diminution of cytotoxic and phototoxic effects
- ➤ No absorption process, no photobleaching (≠ Fluorescence)
- Quadratic dependence on excitation power

SHG: 3D network for functional collagen 0

Inter-costal cartilage (sternum)

Cartilage SHG imaging : quantitative evaluation

Rat Articular Cartilage

AF SHG

Textural analysis ? 3D Organisation ?

Denaturation Degradation Synthesis

Haralick :

Textural analysis based on cooccurrence matrix

Gray levels : SHG - Collagen

9 parameters of textural elements:

Haralick's analysis

- Homogeneity
- Size
- Linearity
- Contrast
- Variance
- Second Angular Moment ...

Micro- TCSPC- SHG imaging : time decay in matrix

Fluorescence Lifetime Imaging Microscopy Biexponential adjustment of Decay curves

Fluorescence Decay Curves

Autofluorescence SHG + + Fluorescence Fluorescence Signal Signal Alexa 488 Fluorescence Signal 1000 2000 X 582,66 245 l eft 1027,57 228 Cross Right 1203,19 41 Θ x-Axis

Mean Fluorescence lifetime (τ_m) Color coded image

SHG - TCSPC imaging : distribution of first component 0 MSC in sponge t2/t1 TGF-BMP SHG AF AF SHG Intensity Lifetime 400 200 600 800 descriptor 357 247,3 Left Cross 427,79 419 Proliferation / 460 Right 584.2 Synthesis x-Axis (++) \odot counts T1: 10 T2: 224 TMax 16 Bin: 10 Thid: 10 Pos: 99 x 104 y t1 = 319.68 Multiexponential Decay t1 Components: 3 00000 a1[%] 59,8 $\chi^2 = 1.13$ SHG collagen 10000t1[ps] 320 1000-SHG (t1 = 320 ps)a2[%] 31,1 diffused AF (t2 = 1952 ps)100t2[ps] 1952,5 Fix a3[%] 9 ÷ t2 🕂 🗆 Fix t3[ps] 2241,6 🕂 🗆 Fix Shift 1,00 and the second and the second se AF cells 🕂 🗆 Fix -5-Scatter 0,002 ns 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7.0 ÷ Fix reflected Offset 4

• SHG Multimodalities Imaging : Limitations in Microscopy ?

MSC in Col1 sponge – Mab anti-Col2 (alexa-488) Coll. A.Pinzano – C. Henrionnet – P. Gillet

Limitations for medical applications : labelling / cutting / depth penetration

- Destructive assay for deep imaging or (cutting)
- > Invasive protocol for labelling : exogenous probes, natural protein in tissue (elastine, collagene)
- New advances : Functional Imaging (physiological condition)

Multiscaled imaging : Macroscopy

New advanced Macroscopy : Confocal - Multiphoton-SHG 0

CLSM

Macroscope

Confocal Macroscope

Multiphoton Laser

FLIM

Confocal Macroscope

Macroscope Multiphoton

SHG

Metrology : MacroConfocal–MP

• Appel à projet CNRS 2008-2009 - prototype PTIBC

MacroTCSPC-SHG : Col synthesis by MSC in sponge

Free Cell (pure col1)

MSC

7 mm Zoom 1,8 Macro 240x

500 µm Zoom 18x Macro 340x

46 μm Zoom 32x Macro 545x

46 μm Zoom 32x Macro 545x

Zoom Macro 27x

Sponge of Col1

PTIBC-IBISA

UMR 7561 CNRS-Université Henri Poincaré Nancy I Faculté de Médecine, B.P. 184 F 54505 Vandoeuvre-lès-Nancy cedex – France D.Dumas, S. Hupont, JF. Stoltz, P. Gillet Directeur : Jacques.Magdalou FR3209 CNRS Directeur : Patrick Netter

Aknowledgement

C. HenrionnetA. PinzanoS. Hupont

CG 54 Région Lorraine ARC IBISA FRM GDR2588CNRS RTmfm CNRS

CNRS (MRCT) - IGBMC (Strasbourg) - Ecole Polytechnique Palaiseau

