Quand l’imagerie optique s’invite au bloc opératoire

Sylvain Gioux, Ph.D.
Professeur, Université de Strasbourg
Laboratoire ICube, UMR7357
Outline

• Motivations
• Fluorescence imaging
• Endogenous imaging
• What’s next?
• Conclusion
Outline

• Motivations
• Fluorescence imaging
• Endogenous imaging
• What’s next?
• Conclusion
Surgery: the engineer perspective

1950s

- Few tools available
- Surgery is performed **subjectively**
 - Surgeon relies on his own senses
 - Experience dependent
- Variable outcome
- Recurrence, morbidity, mortality

2000s
Light and tissues

μ_a | Absorption
μ_s' | Scattering
Fluorescence

Red color
Blurring
Molecular Imaging for Surgery

Exogenous information
- NIR
- Color-NIR Merge

Endogenous information
- Absorption
- Scattering

Qualitative Contrast Agent Localization
- Specific (i.e. targeted)
- Non-Specific (i.e. passive)

Quantitative Endogenous Imaging
- Hemoglobin \leftrightarrow Oxygen saturation
- Lipids \leftrightarrow Metabolism
- Water \leftrightarrow Hydration
- Scattering \leftrightarrow Subcellular content
Outline

- Motivations
- Fluorescence imaging
- Endogenous imaging
- What’s next?
- Conclusion
Fluorescence imaging: basics

Contrast agent

Imaging device

Gioux et al., Mol Imaging, 2010; 9: 237-255
Preclinical example

Matsui et al., Surgery 2010
Nguyen et al., J Surg Res 2012
The evolution of imaging devices

Early prototypes

- Miniaturization
- Low cost
- High performance
Fluorescence imaging today

- Devices used on over 1000 patients
- Over 8 commercial devices available
- Relies on already approved dyes (ICG, MB)
- New contrast agents under human trial (10+)

Flap perfusion Ureters detection SLN mapping

FIGS: a success?

- Translation performed using advanced imaging systems but poor molecular probes
- Challenges in comparing results

- Progress needed:
 - Invent and translate probes that are specific
 - Standardize measurements
 * Between patients, surgeons and hospitals
 * Repeatable and interpretable
Outline

• Motivations
• Fluorescence imaging
• Endogenous imaging
• What’s next?
• Conclusion
PARADIGM SHIFT: photons interact within living tissues
Requirements for technology

- Technological needs
 - Real-time
 - Quantitative
 - Wide-field

Real-time

Point spectroscopy

Quantitative

SFDI

CW fluorescence

Wide field
Single Snapshot of Optical Properties (SSOP)

Vervandier et al., Biomedical Optics Express, 2013, 4(12):2938-44.
Validation on Pigs

- Oxygenation imaging on
 - Skin flaps
 - Bowel
 - Liver

- Comparison with gold standard: Vioptix T.Ox
First-in-human Pilot Study

Gioux et al. JBO. 2011. 26:086015.

21
Outline

• Motivations
• Fluorescence imaging
• Endogenous imaging
• What’s next?
• Conclusion
Real-time quantitative fluorescence imaging

• Issue: Fluorescence imaging is qualitative

• Need: Quantitative fluorescence imaging

• Objective: use endogenous imaging to correct for tissue properties
Real-time quantitative fluorescence imaging

Valdes et al., Biomedical Optics Express, 2017; 8(8): 3597-605
Real-time quantitative fluorescence imaging

Valdes et al., Biomedical Optics Express, 2017; 8(8): 3597-605
Endoscopic real-time quantitative imaging

• Issue: Over 50% of all surgeries are minimally invasive and lack feedback

• Need: Providing objective feedback in endoscopes

• Objective: Adapt SSOP technology
Endoscopic real-time quantitative imaging
Endoscopic **real-time quantitative imaging**

- Endoscope serializable + sterile drape
- Undergoing clinical translation with IHU
Real-time *multispectral* quantitative imaging

- **Issue:** Optical properties are not enough to make decisions

- **Need:** Provide interpretable images

- **Objective:** Acquire & process multiple wavelengths in real-time
Spatio-temporal modulation of light

Time

Space

\[\lambda_1 \]

\[\lambda_n \]

Projector

Camera

Intensity

Time

DFT processing

SSOP processing

\[\mu_a(\lambda_1) \]

\[\mu_a(\lambda_n) \]

\[\mu_s(\lambda_1) \]

\[\mu_s(\lambda_n) \]
Real-time multispectral quantitative imaging

$\lambda = 665\text{nm}$

$\mu_a [\text{mm}^{-1}]$
$\mu_s' [\text{mm}^{-1}]$

$\lambda = 860\text{nm}$

$\mu_a [\text{mm}^{-1}]$
$\mu_s' [\text{mm}^{-1}]$
Outline

• Motivations
• Fluorescence imaging
• Endogenous imaging
• What’s next?
• Conclusion
Making Sense in Surgery™

• To help surgeons’ decision-making
• By creating new senses (i.e. interpretable information)

• Optical imaging for surgery
 – Real-time, wide-field, quantitative
 – Safe, inexpensive

• Currently transitioning from proof-of-concept to clinical trials
 – Perfusion assessment (e.g. PAD, anastomosis)
 – Transplant status assessment (e.g. liver, flaps)
 – *In situ* diagnosis (e.g. CRC, SLN mapping)
Acknowledgments

Scientific collaborators:
Bruce J. Tromberg, Ph.D., UC Irvine, USA
David J. Cuccia, Ph.D., Modulated Imaging, USA
Amaan Mazhar, Ph.D., Modulated Imaging, USA
Frangioni Laboratory, Boston, USA

Gioux Research Group:
Enagnon Aguenounon, M.S
Joseph Angelo, Ph.D.
Alexander Link, B.S.
Swapnesh Panigrahi, Ph.D.
Manon Schmidt, M.S.
Murielle Torregrossa, Ph.D.
Pablo Valdes, M.D., Ph.D.
Martijn van de Giessen, Ph.D.
Jean Vervandier, M.S.
Henrique Waxin, M.S.
Silvère Ségaud, M.S.
Lucile Zorn, M.S.

Clinical collaborators:
Bernard T. Lee, M.D., M.B.A (BIDMC, USA)
Sidhu P. Gangadharan, M.D. (BIDMC, USA)
Alex L. Vahrmeijer, M.D., Ph.D. (LUMC, Netherlands)
Michele Diana, M.D., Ph.D. (IHU, Strasbourg)
Eric Vibert, M.D., Ph.D. (APHP Paul Brousse, Paris)

Funding:
K01-DK-093603
8 UL1 TR000170-05, Harvard Catalyst
R01-DE-022820
France Life Imaging
ERC 715737 - QuantSURG
University of Strasbourg IdEx
ICube Laboratory
ANR LiverSURG